聊聊安防监控中视频图像处理技术

文件格式文件大小发布会员发布日期浏览次数下载次数
docx18.4KB1529********2019-09-29330
立即下载

内容简介

视频图像处理技术的应用价值   视频图像处理技术简而言之就是用计算机对视频数字图像进行处理,其本质是一种信号处理过程,而且是离散信号处理。在视频监控行业为什么要进行图像处理呢?那我们就需要分析视频图像处理后所带来的优势有哪些?   其一,提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善视频图像的质量。   其二,提取视频图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是计算机或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。   其三,视频图像增强与复原。图像增强的目的是将图像转换为更适合人和机器的分析的形式。常用的增强方法有:灰度等级直方图处理;干扰抵制;边缘锐化;伪彩色处理。图像复原的目的与图像增强相同,其主要原则是为了消除或减少图像获取和传输过程中造成的图像的损伤和退化,这包括图像的模糊、图像的干扰和噪声等,尽可能的获得原来的真实图像。无论是图像增强还是图像的复原,都必须对整副图像的所有像素进行运算,出于图像像素的大数量考虑,其运算也十分的巨大。编码的目的是在不改变图像的质量基础上压缩图像的信息量,以满足传输与存储的要求。编码多采用数字编码技术对图像逐点的进行加工。这一点在公安针对视频图像来还原细节中经常遇到。   其四,图像的分析。从图像中抽取某些有用的度量、数据和信息,以的到某种数值结果。图像分析用图像分割方法抽取图像的特征然后对图像进行符号化的描述,这种描述不仅能对图像是否存在某一特定的对象进行回答,还能对图像内容进行详细的描述。   其五,能使图像再现性。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化,只要图像在数字化时准确地表现了原稿,则数字图像处理过程始终能保持图像的再现。   其六,灵活多变的处理功能。针对模拟技术而言,我们现在的视频监控图像处理技术可以把监控画面分割为任意大小的二维数组,这意味着图像的数字化精度可以达到满足任一应用需求,符合行业高清化趋势。   其七,适用面宽。视频监控图像可以来自多种信息源,比如可以是银行画面,也可以是机场或者海事等远距离监控,不论是来自哪个行业的信息源的图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,   其八,灵活性高。数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。   不过,视频图像处理技术占用的频带较宽,,所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就需要我们了解制约视频图像处理技术的因素。   视频图像处理技术的主流技术   视频图像处理就技术而言涉及的知识面十分广阔,具体方法种类繁多,应用也极为普遍,但如果在安防行业角度分析,该技术的主要内容包括三大部分:图像压缩;增强和复原;匹配、描述和识别。由于超高清的要求,在图像压缩方面H.265自然优势大,由于关于H.265的技术专题已经阐述了和视频图像处理的关系,本文就不在这方面做具体介绍。为此,在剩下的两部分我们目前主要关注的视频图像处理技术有以下几个方面:   智能分析处理技术   智能分析处理技术是目前中国安防行业较为关注的图像处理技术,该技术简而言之,就是发现图像中运动的物体,并对其进行跟踪、分析,及时发现异常行为,触发报警并采取其他措施进行干预。智能分析处理技术是基于监控图像处理软件包而开发的,主要有以下几种图像处理形式:   1、将(运动)目标从视频图像中分离出来。2、对目标进行行为分析,判定其运动的方向、方式,并能发现和告警异常的行为;产生目标的运动轨迹,并能进行目标的自动跟踪。3、实现视频语义的解析,图像处理分析的高层次。通过对一个图像序列作出分析,得出其包含的真实信息,可以与话音的语义解析结合起来,逐步实现视频语义的解析。4、在复杂环境下实现目标的分离、行为分析和运动跟踪,特别是实现多目标的跟踪。   上述几点早已有实际应用(比如,单绊线入侵检测、多绊线、围栏入侵、进入/退出区域检测、徘徊检测、遗留物检测、物体搬移检测、物体出现检测、物体消失检测、人群密度、人群突变、奔跑检测、逆向检测、人流量、火焰检测、烟雾检测、场景变化、单球机PTZ自动跟踪等),但基本上是在简单环境下,针对少数目标进行智能化的图像处理。在复杂环境视频监控环境(多人流、多移动、恶劣天气)下实现这些功能,是图像智能分析处理技术真正价值所在。要解决多个图像的综合分析,图像间目标的关联,目标跟踪的连续性,这都是市场应用的迫切需要,也是我们亟待解决的问题。   宽动态技术   宽动态技术是松下第一个在监控行业尝试,那是1977年它的宽动态范围是40倍,引入国内受到业界追捧是在2005年的深圳安博会。两年后,美国PIXIM方案也在市场上广为流行,成为宽动态的另一种选择。   宽动态视频图像处理技术主要是用来解决摄像机在宽动态场景中采集的图像出现亮区域过曝而暗区域曝光不够的现象。简而言之,宽动态技术可以使场景中特别亮的区域和特别暗的区域在最终成像中同时看清楚。这种技术是安防行业应为普遍的视频图像处理技术,经过十多年的市场洗礼和技术提升,目前还是存在一些不足。一是源自它在高亮区域短曝特征,会导致在日光灯场景下亮区域出现横条纹闪烁,这是常见的日光灯工频引起的闪烁现象,因为在亮区域的曝光时间非常短,没有达到抗闪所需的最低曝光时间;二是源自它在暗区域长曝特征,当物体进行高速运动时会因过长的曝光时间而产生拖影现象。   透雾处理   这个技术在2010年随着高清的到来开始在国内应用,当时日立推出的机芯产品就主打透雾功能。该技术是可实时处理各种雾霾天气中的视频图像,去除由雾霾造成的景象朦胧、模糊、看不清或看不见的情况,能够显著增强视频图像的细节信息,使原来被遮隐的图像细节得以充分展现,并保持了原有的色彩色调,使视频图像变得极其明亮、通透和清晰,因而获得了良好的图像质量与视觉感受。   无损实时放大处理   可实时对视频图像进行各种倍率的放大,放大的视频图像没有任何模糊和马赛克,并能够对原视频图像的细节部分予以充分的保留。   强光抑制处理   可实时对视频图像中的强光亮点或区域进行抑制,使强光范围和亮度减小,恢复被强光散射遮掩的目标景物的轮廓和色彩,获得清晰的视频图像。   去除模糊处理   可处理图像中的散焦模糊和运动模糊等,使被观察景物图像变得清晰。   前三种可以说是目前安防行业关注的三种视频图像处理技术,后三者的图像处理由于各个厂家大多采用市面上几个主流的产品方案,以至于在产品性能表现时都没有多大优劣区别。

本资料为网友上传,仅供学习交流,如有版权问题请【联系我们